- Node.js 菜鸟教程
- Node.js - 教程
- Node.js - 简介
- Node.js - 环境设置
- Node.js - 首次申请
- Node.js - REPL 终端
- Node.js - 命令行选项
- Node.js - 包管理器 (NPM)
- Node.js - 回调概念
- Node.js - 上传文件
- Node.js - 发送电子邮件
- Node.js - 活动
- Node.js - 事件循环
- Node.js - 事件发射器
- Node.js - 调试器
- Node.js - 全局对象
- Node.js - 控制台
- Node.js - 流程
- Node.js - 扩展应用程序
- Node.js - 包装
- Node.js - Express 框架
- Node.js - RESTful API
- Node.js - 缓冲器
- Node.js - Streams
- Node.js - 文件系统
- Node.js MySQL
- Node.js - MySQL 快速入门
- Node.js - MySQL创建数据库
- Node.js - MySQL创建表
- Node.js - MySQL Insert Into
- Node.js - MySQL Select From
- Node.js - MySQL Where 子句
- Node.js - MySQL Order By
- Node.js - MySQL Delete
- Node.js - MySQL Update
- Node.js - MySQL Join
- Node.js MongoDB
- Node.js - MongoDB 快速入门
- Node.js - MongoDB 创建数据库
- Node.js - MongoDB 创建集合
- Node.js - MongoDB Insert
- Node.js - MongoDB Find
- Node.js - MongoDB 查询
- Node.js - MongoDB 排序
- Node.js - MongoDB Delete
- Node.js - MongoDB Update
- Node.js - MongoDB Limit
- Node.js - MongoDB Join
- Node.js模块
- Node.js - 模块
- Node.js - 内置模块
- Node.js - utility 模块
- Node.js - Web 模块
Node.js - MySQL Order By
在 Node.js应用程序中,您可能希望按升序或降序从 MySQL 数据库中检索数据。在MySQL中,ORDER BY子句按指定顺序对SELECT语句返回的结果集进行排序。使用 Node.js 应用程序从 MySQL 数据库中检索数据时,mysql 模块中定义的连接对象的 query() 方法的查询字符串参数应具有 ORDER BY 子句。在本章中,通过示例描述了 SELECT 语句中 ORDER BY 子句在 Node.js 应用程序中的各种用例。
SELECT语句中ORDER BY子句的语法如下:
SELECT select_list FROM table_name
ORDER BY column1 [ASC|DESC], column2 [ASC|DESC], ...;
您可以指定要在 ORDER BY 子句之后进行排序的一列或多列。默认排序顺序为升序 (ASC)。
ORDER BY column1;
若要按降序获取行,请在列名称前面使用 DESC。
ORDER BY column1 DESC;
数值字段的升序获取字段从最小值到最大值的行数。然而,字符串字段(例如 VARCHAR 或 TEXT)的升序导致从 a 到 z 的字母顺序。同样,对于 DateTime 字段,升序是指按时间顺序排列的顺序,即从较早的日期到较晚的日期。
例以下Node.js代码,mysql模块的query()方法按Salas字段的升序返回Employee表中的行。
var mysql = require('mysql');
var con = mysql.createConnection({
host: "localhost",
user: "root",
password: "mypassword",
database: "mydb"
});
var qry =`SELECT * FROM employee ORDER BY salary;`;
con.connect(function (err) {
if (err) throw err;
console.log("Connected!");
con.query(qry, function (err, results) {
if (err) throw err;
console.log(results);
});
con.end();
});
输出
[
RowDataPacket { id: 1, name: 'Ravi', age: 25, salary: 25000 },
RowDataPacket { id: 3, name: 'Meena', age: 26, salary: 27000 },
RowDataPacket { id: 2, name: 'Anil', age: 26, salary: 30000 }
]
作为带有字段的 DESC 关键字的降序示例,将查询字符串更改为以下内容 -
var qry =`SELECT * FROM employee ORDER BY name DESC;`;
结果集将按 employee able 中姓名的降序排列。
[
RowDataPacket { id: 1, name: 'Ravi', age: 25, salary: 25000 },
RowDataPacket { id: 3, name: 'Meena', age: 26, salary: 27000 },
RowDataPacket { id: 2, name: 'Anil', age: 26, salary: 30000 }
]
多列排序
如前所述,您可以在 ORDER BY 子句之后指定一列或多列。这将首先对第一列上的行进行排序。第一列值相同的行按第二列的值排序。实际上,这变成了排序或嵌套排序中的排序。
为了说明多列排序,我们将使用 MySQL 8.0 安装中预装的 world 数据库。世界数据库包括一个城市表,其结构如下:
+-------------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+----------+------+-----+---------+----------------+
| ID | int | NO | PRI | NULL | auto_increment |
| Name | char(35) | NO | | | |
| CountryCode | char(3) | NO | MUL | | |
| District | char(20) | NO | | | |
| Population | int | NO | | 0 | |
+-------------+----------+------+-----+---------+----------------+
使用以下Node.js代码,我们将获取按人口升序排序的按地区划分的城市列表。
例
var mysql = require('mysql');
var con = mysql.createConnection({
host: "localhost",
user: "root",
password: "mypassword",
database: "world"
});
var qry =`select * from city where name like 'D%' and countrycode='IND' order by district, population;`;
con.connect(function (err) {
if (err) throw err;
console.log("Connected!");
con.query(qry, function (err, results) {
if (err) throw err;
console.log(results);
});
con.end();
});
输出
[
RowDataPacket {
ID: 1276,
Name: 'Dibrugarh',
CountryCode: 'IND',
District: 'Assam',
Population: 120127
},
RowDataPacket {
ID: 1350,
Name: 'Dehri',
CountryCode: 'IND',
District: 'Bihar',
Population: 94526
},
RowDataPacket {
ID: 1138,
Name: 'Darbhanga',
CountryCode: 'IND',
District: 'Bihar',
Population: 218391
},
RowDataPacket {
ID: 1206,
Name: 'Durg',
CountryCode: 'IND',
District: 'Chhatisgarh',
Population: 150645
},
RowDataPacket {
ID: 1351,
Name: 'Delhi Cantonment',
CountryCode: 'IND',
District: 'Delhi',
Population: 94326
},
RowDataPacket {
ID: 1025,
Name: 'Delhi',
CountryCode: 'IND',
District: 'Delhi',
Population: 7206704
},
RowDataPacket {
ID: 1203,
Name: 'Dhanbad',
CountryCode: 'IND',
District: 'Jharkhand',
Population: 151789
},
RowDataPacket {
ID: 1119,
Name: 'Davangere',
CountryCode: 'IND',
District: 'Karnataka',
Population: 266082
},
RowDataPacket {
ID: 1347,
Name: 'Damoh',
CountryCode: 'IND',
District: 'Madhya Pradesh',
Population: 95661
},
RowDataPacket {
ID: 1186,
Name: 'Dewas',
CountryCode: 'IND',
District: 'Madhya Pradesh',
Population: 164364
},
RowDataPacket {
ID: 1113,
Name: 'Dhule (Dhulia)',
CountryCode: 'IND',
District: 'Maharashtra',
Population: 278317
},
RowDataPacket {
ID: 1167,
Name: 'Dindigul',
CountryCode: 'IND',
District: 'Tamil Nadu',
Population: 182477
},
RowDataPacket {
ID: 1117,
Name: 'Dehra Dun',
CountryCode: 'IND',
District: 'Uttaranchal',
Population: 270159
},
RowDataPacket {
ID: 1214,
Name: 'Dabgram',
CountryCode: 'IND',
District: 'West Bengal',
Population: 147217
},
RowDataPacket {
ID: 1082,
Name: 'Durgapur',
CountryCode: 'IND',
District: 'West Bengal',
Population: 425836
}
]
RowDataPacket {
ID: 1276,
Name: 'Dibrugarh',
CountryCode: 'IND',
District: 'Assam',
Population: 120127
},
RowDataPacket {
ID: 1350,
Name: 'Dehri',
CountryCode: 'IND',
District: 'Bihar',
Population: 94526
},
RowDataPacket {
ID: 1138,
Name: 'Darbhanga',
CountryCode: 'IND',
District: 'Bihar',
Population: 218391
},
RowDataPacket {
ID: 1206,
Name: 'Durg',
CountryCode: 'IND',
District: 'Chhatisgarh',
Population: 150645
},
RowDataPacket {
ID: 1351,
Name: 'Delhi Cantonment',
CountryCode: 'IND',
District: 'Delhi',
Population: 94326
},
RowDataPacket {
ID: 1025,
Name: 'Delhi',
CountryCode: 'IND',
District: 'Delhi',
Population: 7206704
},
RowDataPacket {
ID: 1203,
Name: 'Dhanbad',
CountryCode: 'IND',
District: 'Jharkhand',
Population: 151789
},
RowDataPacket {
ID: 1119,
Name: 'Davangere',
CountryCode: 'IND',
District: 'Karnataka',
Population: 266082
},
RowDataPacket {
ID: 1347,
Name: 'Damoh',
CountryCode: 'IND',
District: 'Madhya Pradesh',
Population: 95661
},
RowDataPacket {
ID: 1186,
Name: 'Dewas',
CountryCode: 'IND',
District: 'Madhya Pradesh',
Population: 164364
},
RowDataPacket {
ID: 1113,
Name: 'Dhule (Dhulia)',
CountryCode: 'IND',
District: 'Maharashtra',
Population: 278317
},
RowDataPacket {
ID: 1167,
Name: 'Dindigul',
CountryCode: 'IND',
District: 'Tamil Nadu',
Population: 182477
},
RowDataPacket {
ID: 1117,
Name: 'Dehra Dun',
CountryCode: 'IND',
District: 'Uttaranchal',
Population: 270159
},
RowDataPacket {
ID: 1214,
Name: 'Dabgram',
CountryCode: 'IND',
District: 'West Bengal',
Population: 147217
},
RowDataPacket {
ID: 1082,
Name: 'Durgapur',
CountryCode: 'IND',
District: 'West Bengal',
Population: 425836
}
]